ELEKTROPHILE SUBSTITUTIONSREAKTIONEN VON SULFONYLTRIAZENEN MIT BENZOL

Richard K r e h e r und Reinhard H a l p a a p

Institut für Organische Chemie, Technische Hochschule Darmstadt

D-6100 Darmstadt, Petersenstraße 22, Germany

(Received in Germany 27 June 1977; received in UK for publication 12 July 1977)

 N_2 -Eliminierungsreaktionen 3), die durch Elektrophile $^{4-6}$ [Protonen- und Lewis-Säuren, Triäthyloxonium- und Nitrosyl-tetrafluoroborat] ausgelöst werden, ermöglichen einen Zugang zu reaktiven Onium- und Enium-Zwischenstufen 7,8). Die experimentellen Resultate garantieren bisher keine eindeutige Prognose über das Verhalten von Sulfonyltriazenen (1) bzw. (1 2) mit einem präformierten 1 2-Molekül nach elektrophiler Aktivierung mit Lewis-Säuren. Die Zerfallsrichtung – Bildung von C-Diazonium-Ionen (1 2) oder N- bzw. S-Diazonium-Ionen (1 3) bzw. (1 3) – dürfte durch die Triazenstruktur und die Komplexierungsstelle bestimmt werden, die tautomeren NH-Sulfonyltriazene (1 3) und (1 4) wurden deshalb durch eine N-Methylgruppe fixiert.

Tabelle 1. 1,3-Aryl-p-toluolsulfonyl-triazene ($\frac{1}{2}$) und ($\frac{2}{2}$): Die Darstellung der Sulfonyltriazene ($\frac{1}{2}$) und ($\frac{2}{2}$ a) erfolgt durch Umsetzung von Phenyldiazoniumchlorid mit dem entsprechenden Sulfonsäureamid. Durch Methylierung des NH-Sulfonyltriazens ($\frac{1}{2}$) mit Dimethylsulfat ist das N-Methyl-Isomere ($\frac{2}{2}$ b) zugänglich. Reaktionsführung und Aufarbeitung nach Dutt et al. 9) müssen modifiziert werden, um kristalline Verbindungen zu erhalten. Die analytischen und spektroskopischen Befunde stimmen mit der Triazenstruktur überein. Die Mol-Masse kann massenspektrometrisch durch Feld-Ionisation ermittelt werden, während bei Elektronenstoß-Ionisation nur Fragment-Ionen auftreten.

Für das Sulfonyltriazen ($\begin{subarray}{c} \underline{2} \end{subarray}$ mit einer fixierten Sulfonamid-Gruppierung ist die Heterolyse der polarisierten N,N-Bindung nach (r_1) und die intermediäre Bildung von Phenyldiazonium-Ionen ($\begin{subarray}{c} 4 \end{subarray}$) typisch, während als komplementäres Reaktionsprodukt N-Methyl-p-toluolsulfonamid ($\begin{subarray}{c} 3 \end{subarray}$), R = Methyl) isolierbar ist. In einem FolgeprozeB entsteht aus den C-Diazonium-Ionen ($\begin{subarray}{c} 4 \end{subarray}$) durch Arylierung des Benzols hauptsächlich Biphenyl ($\begin{subarray}{c} 9 \end{subarray}$). In der gleichen Weise bildet das Sulfonyltriazen ($\begin{subarray}{c} 2 \end{subarray}$) mit Toluol, m- und p-Xylol, Mesitylen und Thiophen substituierte Biphenyle mit Ausbeuten bis zu 50 % d. Theorie.

Das Sulfonyltriazen ($\underline{2}\underline{b}$) mit einer blockierten Arylamin-Gruppierung reagiert weniger übersichtlich und liefert vorwiegend 4-Methylamino-biphenyl ($\underline{1}\underline{1}$). Der Substitutionsreaktion mit Benzol muß eine Heterolyse der polarisierten N,S-Bindung nach (\underline{r}_2) vorausgehen, wobei die Abspaltung von Sulfinsäure ($\underline{5}$) und Stickstoff anscheinend von einer konsekutiven Phenylierung der benzoiden p-Position begleitet wird. Unter dem Einfluß von Aluminiumchlorid bildet die p-Toluolsulfinsäure ($\underline{5}$) vermutlich durch Disproportionierung 10,11) den Thiolsulfonsäureester ($\underline{12}$).

p-Substitution eines benzoiden Systems wird unter ähnlichen Bedingungen beim N,N'-Dimethyl-N,N'-diphenyl-2-tetrazen beobachtet. Bei der Umsetzung mit Aluminiumchlorid in Benzol wird N-Methylanilin und Stickstoff abgespalten und durch C-Substitution 4-Methylamino-biphenyl (Ausb. ~1 %) gebildet. Mit Trifluormethansulfonsäure anstelle von Aluminiumchlorid steigt einerseits die Ausbeute an diesem Substitutionsprodukt an, während andererseits mit überraschend guten Ausbeuten das O-Triflat des 4-Methylamino-phenols gebildet wird. Dieses p-Substitutionsprodukt (Ausb. 80 % d.Th.) entsteht aus dem Δ^2 -Tetrazen praktisch ausschließlich, wenn man die Umsetzung mit Trifluormethansulfonsäure in Dichlormethan durchführt. Nach diesen Befunden sind anscheinend N-Diazonium-Ionen (§) zu Substitutionsreaktionen in p-Stellung mit Nucleophilen befähigt.

In einer Nebenreaktion entstehen aus dem Sulfonyltriazen ($\frac{1}{2}$ b) durch Heterolyse der polarisierten N,N-Bindung nach (r_3) anscheinend Sulfonyldiazonium-Ionen ($\frac{8}{2}$). In diese Richtung weist die Isolierung von p-Toluolsulfonylchlorid (Ausb. 8 %) und von 4-Methyldiphenylsulfon (Ausb. 1 %). Die weiteren Umwandlungsprodukte lassen keine Rückschlüsse auf die Fragmentierungsrichtung des Sulfonyltriazens ($\frac{1}{2}$ b) zu. Die Entstehung von N-[p-Toluolsulfonyl]-N-methylanilin (Ausb. 4 %) durch N $_2$ -Abspaltung kann über verschiedene Reaktionswege erklärt werden.

Das tautomere NH-Sulfonyltriazen ($\underline{1}$) reagiert analog dem N-Methyl-Isomeren ($\underline{2}\underline{a}$) mit einer fixierten Sulfonamid-Gruppierung. Bei der Umsetzung mit Benzol unter dem Einfluß von Aluminiumchlorid dominiert die Heterolyse der polarisierten N,N-Bindung nach (\mathbf{r}_1), sodaß als korrespondierende Hauptkomponenten Biphenyl ($\underline{9}$) und p-Toluolsulfonamid ($\underline{3}$, R = H) entstehen. Ein ähnliches Verhalten ist von 3-Acylund 3-Alkoxycarbonyl-1-aryl-triazenen $\underline{6}$) bekannt, die gleichfalls elektrophile Arylierungsreaktionen mit Benzol eingehen.

Tabelle 2. Reaktionsprodukte der Umsetzung von 1,3-Aryl-p-toluolsulfonyl-triazenen ($\underline{1}$) und ($\underline{2}$) mit Aluminiumchlorid in Benzol (20 $^{\circ}$ C/30-48 h).- Die N $_2$ -Entwicklung wird volumetrisch kontrolliert bis ein Sättigungswert erreicht ist. Nach der Hydrolyse werden die Reaktionsprodukte durch Extraktion und Chromatographie getrennt und durch spektroskopische Methoden identifiziert.

Triazen	с ₆ н ₅ -с ₆ н ₅	R-NH-SO ₂ -Ar'	с ₆ н ₅ -с ₆ н ₄ -с ₆ н ₅
	(9)	(<u>3</u>)	(<u>1</u> <u>0</u>)
$(\frac{1}{2}, R = H)$	47 %	88 %	1 % Terphenyle
$(\frac{2}{2}a, R = CH_3)$	36 - 43 %	58 - 79 %	
			r
Triazen	$^{\text{C}_{6}^{\text{H}_{5}}-\text{C}_{6}^{\text{H}_{4}}-\text{NH-R}}$	C ₆ H ₅ -NR-SO ₂ -Ar'	Ar'-so ₂ -s-Ar' (<u>1</u> 2)

Die experimentellen Ergebnisse ermöglichen einerseits Folgerungen über das regiospezifische Verhalten der ambifunktionellen Sulfonyltriazene und tragen andererseits zur Klärung elektrophiler Reaktionen von Arylsulfonylaziden mit benzoiden Verbindungen bei $^{7e,12,13)}$. Unter ähnlichen Bedingungen werden durch Aluminiumchlorid "Sulfonierungs- und Aminierungsreaktionen" mit aromatischen Kohlenwasserstoffen induziert. Als gemeinsame Zwischenstufe sind für beide Umwandlungen 3-Arylsulfonyl-1-aryl-triazene (1) in betracht zu ziehen, die aus den komplexierten Sulfonylaziden durch $S_{\rm E}$ -Reaktion mit den benzoiden Reaktionspartnern entstehen sollten. Dieser an sich plausible Reaktionsweg $^{7e)}$ wird durch die vorliegenden Ergebnisse eindeutig ausgeschlossen, da einerseits bei der "Azid-Reaktion" die relevante Bildung von Biphenyl nicht nachweisbar ist und andererseits bei der "Triazen-Reaktion" keine primären aromatischen Amine entstehen.

Das exemplarische Studium der bislang wenig erforschten Sulfonyltriazene kann durch systematische Untersuchungen ergänzt werden, nachdem für diese Stoffklasse ein allgemein anwendbares Syntheseverfahren gefunden wurde $^{14)}$.

Diese Arbeit wurde vom Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft unterstützt.

- 1) N_2 -Eliminierungen unter dem Einfluß von Elektrophilen; 10.Mitteilung.-9.Mitteilung 2 .
- 2) R. Kreher u. U. Bergmann, Tetrahedron Lett. 1976, 4259.
- 3) W. Kirmse, Angew. Chem. $\underline{88}$, 273 (1976); Angew. Chem. Int. Ed. $\underline{15}$, 251 (1976); Ubersicht: Stickstoff als Abgangsgruppe.
- 4) R. Kreher u. G. Jäger, Angew. Chem. 77, 730 (1965); Angew. Chem. Int. Ed. 4, 706 (1965).
- 5) R. Kreher, H. Hennige u. M. Schmidt, Angew. Chem. <u>83</u>, 915 (1971); Angew. Chem. Int. Ed. <u>10</u>, 841 (1971).
- 6) R. Kreher, Angew. Chem. 85, 1061 (1973); Angew. Chem. Int. Ed. 12, 1022 (1973).
- 7) R. Kreher u. G. Jäger, a) 1.Mitt.: Z.Naturforsch. 19 b, 657 (1964) bis e) 5.Mitt.: Z.Naturforsch. 31 b, 126 (1976).
- 8) R. Kreher u. K. Goth, Z.Naturforsch. 31 b, 131 (1976) u. Z.Naturforsch. 31 b, 217 (1976).
- P.K. Dutt, H.R. Whitehead u. A. Wormall, J. Chem. Soc. 119, 2088 (1921);
 A. Key u. P.K. Dutt, J. Chem. Soc. 1928, 2035.
- 10) H. Bredereck, A. Wagner, H. Beck u. R.J. Klein, Chem. Ber. $\frac{93}{2}$, 2736 (1960); vgl. Anmerkung
- 11) J.L. Kice, G. Guaraldi u. C.G. Venier, J. Org. Chem. $\frac{31}{2}$, 3561 (1966); vgl. Literatur-Hinweise
- 12) G.S. Sidhu, G. Thyagarajan u. U.T. Bhalerao, Chem. Ind. 1966, 1301.
- 13) A.F.M. Fahmy u. H. Abdel-Fadel, Indian. J. Chem. 11, 440 (1973).
- 14) E. Stöldt, Dissertation, TH Darmstadt 1977.